MathDB
Prove two properties for functions

Source: IMO Longlist 1989, Problem 104

September 18, 2008
functionalgebra unsolvedalgebra

Problem Statement

Let n>1 n > 1 be a fixed integer. Define functions f_0(x) \equal{} 0, f_1(x) \equal{} 1 \minus{} \cos(x), and for k>0, k > 0, f_{k\plus{}1}(x) \equal{} f_k(x) \cdot \cos(x) \minus{} f_{k\minus{}1}(x). If F(x) \equal{} \sum^n_{r\equal{}1} f_r(x), prove that (a) 0<F(x)<1 0 < F(x) < 1 for 0 < x < \frac{\pi}{n\plus{}1}, and (b) F(x)>1 F(x) > 1 for \frac{\pi}{n\plus{}1} < x < \frac{\pi}{n}.