Prove two properties for functions
Source: IMO Longlist 1989, Problem 104
September 18, 2008
functionalgebra unsolvedalgebra
Problem Statement
Let be a fixed integer. Define functions f_0(x) \equal{} 0, f_1(x) \equal{} 1 \minus{} \cos(x), and for f_{k\plus{}1}(x) \equal{} f_k(x) \cdot \cos(x) \minus{} f_{k\minus{}1}(x). If F(x) \equal{} \sum^n_{r\equal{}1} f_r(x), prove that
(a) for 0 < x < \frac{\pi}{n\plus{}1}, and
(b) for \frac{\pi}{n\plus{}1} < x < \frac{\pi}{n}.