5
Part of 1989 IMO Longlists
Problems(2)
Bounded by Pi
Source: IMO Longlist 1989, Problem 5
9/18/2008
The sequences and are defined for n \equal{} 0, 1, 2, \ldots by the equalities
a_0 \equal{} \frac {\sqrt {2}}{2}, a_{n \plus{} 1} \equal{} \frac {\sqrt {2}}{2} \cdot \sqrt {1 \minus{} \sqrt {1 \minus{} a^2_n}}
and
b_0 \equal{} 1, b_{n \plus{} 1} \equal{} \frac {\sqrt {1 \plus{} b^2_n} \minus{} 1}{b_n}
Prove the inequalities for every n \equal{} 0, 1, 2, \ldots
2^{n \plus{} 2} a_n < \pi < 2^{n \plus{} 2} b_n.
inequalitiesinductiontrigonometrylimitLaTeXalgebra unsolvedalgebra
Prove two properties for functions
Source: IMO Longlist 1989, Problem 104
9/18/2008
Let be a fixed integer. Define functions f_0(x) \equal{} 0, f_1(x) \equal{} 1 \minus{} \cos(x), and for f_{k\plus{}1}(x) \equal{} f_k(x) \cdot \cos(x) \minus{} f_{k\minus{}1}(x). If F(x) \equal{} \sum^n_{r\equal{}1} f_r(x), prove that
(a) for 0 < x < \frac{\pi}{n\plus{}1}, and
(b) for \frac{\pi}{n\plus{}1} < x < \frac{\pi}{n}.
functionalgebra unsolvedalgebra