Let ABCD be a quadrilateral inscribed in a circle of radius AB such that BC \equal{} a, CD \equal{} b, DA \equal{} \frac{3 \sqrt{3} \minus{} 1}{2} \cdot a For each point M on the semicircle with radius AB not containing C and D, denote by h1,h2,h3 the distances from M to the straight lines (sides) BC,CD, and DA. Find the maximum of h_1 \plus{} h_2 \plus{} h_3. geometry unsolvedgeometry