MathDB
Problems
Contests
International Contests
IMO Longlists
1989 IMO Longlists
15
15
Part of
1989 IMO Longlists
Problems
(1)
Prove that IMO Longlist 1989 is periodic
Source: IMO Longlist 1989, Problem 15
9/18/2008
A sequence
a
1
,
a
2
,
a
3
,
…
a_1, a_2, a_3, \ldots
a
1
,
a
2
,
a
3
,
…
is defined recursively by a_1 \equal{} 1 and a_{2^k\plus{}j} \equal{} \minus{}a_j (j \equal{} 1, 2, \ldots, 2^k). Prove that this sequence is not periodic.
function
algebra
rational function
algebra unsolved