MathDB
Ways that the product of n distinct letters be formed?

Source: IMO Longlist 1989, Problem 44

September 18, 2008
combinatorics unsolvedcombinatorics

Problem Statement

Given two distinct numbers b1 b_1 and b2 b_2, their product can be formed in two ways: b1×b2 b_1 \times b_2 and b2×b1. b_2 \times b_1. Given three distinct numbers, b1,b2,b3, b_1, b_2, b_3, their product can be formed in twelve ways: b1×(b2×b3); b_1\times(b_2 \times b_3); (b1×b2)×b3; (b_1 \times b_2) \times b_3; b1×(b3×b2); b_1 \times (b_3 \times b_2); (b1×b3)×b2; (b_1 \times b_3) \times b_2; b2×(b1×b3); b_2 \times (b_1 \times b_3); (b2×b1)×b3; (b_2 \times b_1) \times b_3; b2×(b3×b1); b_2 \times(b_3 \times b_1); (b2×b3)×b1; (b_2 \times b_3)\times b_1; b3×(b1×b2); b_3 \times(b_1 \times b_2); (b3×b1)×b2; (b_3 \times b_1)\times b_2; b3×(b2×b1); b_3 \times(b_2 \times b_1); (b3×b2)×b1. (b_3 \times b_2) \times b_1. In how many ways can the product of n n distinct letters be formed?