MathDB
Show that there exist real polynomials A_r(x) and B_r(x)

Source: IMO Longlist 1989, Problem 56

September 18, 2008
algebrapolynomialalgebra unsolved

Problem Statement

Let P1(x),P2(x),,Pn(x) P_1(x), P_2(x), \ldots, P_n(x) be real polynomials, i.e. they have real coefficients. Show that there exist real polynomials A_r(x),B_r(x)   (r \equal{} 1, 2, 3) such that \sum^n_{s\equal{}1} \left\{ P_s(x) \right \}^2 \equiv \left( A_1(x) \right)^2 \plus{} \left( B_1(x) \right)^2 \sum^n_{s\equal{}1} \left\{ P_s(x) \right \}^2 \equiv \left( A_2(x) \right)^2 \plus{} x \left( B_2(x) \right)^2 \sum^n_{s\equal{}1} \left\{ P_s(x) \right \}^2 \equiv \left( A_3(x) \right)^2 \minus{} x \left( B_3(x) \right)^2