MathDB
Problems
Contests
International Contests
IMO Longlists
1989 IMO Longlists
26
26
Part of
1989 IMO Longlists
Problems
(1)
Sum 1989 pos. real numbers greather than 2/995
Source: IMO Longlist 1989, Problem 26
9/18/2008
Let
b
1
,
b
2
,
…
,
b
1989
b_1, b_2, \ldots, b_{1989}
b
1
,
b
2
,
…
,
b
1989
be positive real numbers such that the equations x_{r\minus{}1} \minus{} 2x_r \plus{} x_{r\plus{}1} \plus{} b_rx_r \equal{} 0 (1 \leq r \leq 1989) have a solution with x_0 \equal{} x_{1989} \equal{} 0 but not all of
x
1
,
…
,
x
1989
x_1, \ldots, x_{1989}
x
1
,
…
,
x
1989
are equal to zero. Prove that \sum^{1989}_{k\equal{}1} b_k \geq \frac{2}{995}.
algebra unsolved
algebra