MathDB
Sum 1989 pos. real numbers greather than 2/995

Source: IMO Longlist 1989, Problem 26

September 18, 2008
algebra unsolvedalgebra

Problem Statement

Let b1,b2,,b1989 b_1, b_2, \ldots, b_{1989} be positive real numbers such that the equations x_{r\minus{}1} \minus{} 2x_r \plus{} x_{r\plus{}1} \plus{} b_rx_r \equal{} 0   (1 \leq r \leq 1989) have a solution with x_0 \equal{} x_{1989} \equal{} 0 but not all of x1,,x1989 x_1, \ldots, x_{1989} are equal to zero. Prove that \sum^{1989}_{k\equal{}1} b_k \geq \frac{2}{995}.