A sequence of real numbers x0,x1,x2,… is defined as follows: x_0 \equal{} 1989 and for each n≥1
x_n \equal{} \minus{} \frac{1989}{n} \sum^{n\minus{}1}_{k\equal{}0} x_k.
Calculate the value of \sum^{1989}_{n\equal{}0} 2^n x_n. inductionalgebra solvedalgebra