MathDB
x^2 - 1989x - 1 = 0

Source: IMO Longlist 1989, Problem 53

September 18, 2008
floor functionpigeonhole principlealgebra unsolvedalgebra

Problem Statement

Let α \alpha be the positive root of the equation x^2 \minus{} 1989x \minus{} 1 \equal{} 0. Prove that there exist infinitely many natural numbers n n that satisfy the equation: \lfloor \alpha n \plus{} 1989 \alpha \lfloor \alpha n \rfloor \rfloor \equal{} 1989n \plus{} \left( 1989^2 \plus{} 1 \right) \lfloor \alpha n \rfloor.