MathDB
Determine the set of admissible X

Source: IMO Longlist 1989, Problem 47

September 18, 2008
combinatorics unsolvedcombinatorics

Problem Statement

Let A,B A,B denote two distinct fixed points in space. Let X,P X, P denote variable points (in space), while K,N,n K,N, n denote positive integers. Call (X,K,N,P) (X,K,N,P) admissible if (N \minus{} K) \cdot PA \plus{} K \cdot PB \geq N \cdot PX. Call (X,K,N) (X,K,N) admissible if (X,K,N,P) (X,K,N,P) is admissible for all choices of P. P. Call (X,N) (X,N) admissible if (X,K,N) (X,K,N) is admissible for some choice of K K in the interval 0<K<N. 0 < K < N. Finally, call X X admissible if (X,N) (X,N) is admissible for some choice of N,(N>1). N, (N > 1). Determine: (a) the set of admissible X; X; (b) the set of X X for which (X,1989) (X, 1989) is admissible but not (X,n),n<1989. (X, n), n < 1989.