MathDB
For each non-zero complex number z

Source: IMO Longlist 1989, Problem 102

September 18, 2008
algebra unsolvedalgebra

Problem Statement

For each non-zero complex number z, z, let arg(z)\arg(z) be the unique real number t t such that \minus{}\pi < t \leq \pi and z \equal{} |z|(\cos(t) \plus{} \textrm{i} sin(t)). Given a real number c>0 c > 0 and a complex number z0 z \neq 0 with argzπ,\arg z \neq \pi, define B(c, z) \equal{} \{b \in \mathbb{R} \ ; \ |w \minus{} z| < b \Rightarrow |\arg(w) \minus{} \arg(z)| < c\}. Determine necessary and sufficient conditions, in terms of c c and z, z, such that B(c,z) B(c, z) has a maximum element, and determine what this maximum element is in this case.