(CZS5) A convex quadrilateral ABCD with sides AB=a,BC=b,CD=c,DA=d and angles α=∠DAB,β=∠ABC,γ=∠BCD, and δ=∠CDA is given. Let s=2a+b+c+d and P be the area of the quadrilateral. Prove that P2=(s−a)(s−b)(s−c)(s−d)−abcdcos22α+γ geometrytrigonometryconvex quadrilateralTrigonometric IdentitiesIMO ShortlistIMO Longlist