MathDB
Area of quadrilateral

Source:

September 29, 2010
geometrytrigonometryconvex quadrilateralTrigonometric IdentitiesIMO ShortlistIMO Longlist

Problem Statement

(CZS5)(CZS 5) A convex quadrilateral ABCDABCD with sides AB=a,BC=b,CD=c,DA=dAB = a, BC = b, CD = c, DA = d and angles α=DAB,β=ABC,γ=BCD,\alpha = \angle DAB, \beta = \angle ABC, \gamma = \angle BCD, and δ=CDA\delta = \angle CDA is given. Let s=a+b+c+d2s = \frac{a + b + c +d}{2} and PP be the area of the quadrilateral. Prove that P2=(sa)(sb)(sc)(sd)abcdcos2α+γ2P^2 = (s - a)(s - b)(s - c)(s - d) - abcd \cos^2\frac{\alpha +\gamma}{2}