Let x,y,z be real numbers each of whose absolute value is different from 31 such that x+y+z=xyz. Prove that
1−3x23x−x3+1−3y23y−y3+1−3z23z−z3=1−3x23x−x3⋅1−3y23y−y3⋅1−3z23z−z3 trigonometryalgebraTrigonometric Identitiestrigonometric substitutionequationIMO Shortlist