MathDB
Prove the identity if x+y+z=xyz

Source:

September 22, 2010
trigonometryalgebraTrigonometric Identitiestrigonometric substitutionequationIMO Shortlist

Problem Statement

Let x,y,zx, y, z be real numbers each of whose absolute value is different from 13\frac{1}{\sqrt 3} such that x+y+z=xyzx + y + z = xyz. Prove that 3xx313x2+3yy313y2+3zz313z2=3xx313x23yy313y23zz313z2\frac{3x - x^3}{1-3x^2} + \frac{3y - y^3}{1-3y^2} + \frac{3z -z^3}{1-3z^2} = \frac{3x - x^3}{1-3x^2} \cdot \frac{3y - y^3}{1-3y^2} \cdot \frac{3z - z^3}{1-3z^2}