Consider on the first quadrant of the trigonometric circle the arcs AM1=x1,AM2=x2,AM3=x3,…,AMv=xv , such that x1<x2<x3<⋯<xv. Prove that
i=0∑v−1sin2xi−i=0∑v−1sin(xi−xi+1)<2π+i=0∑v−1sin(xi+xi+1) trigonometryTrigonometric inequalityTrigonometric IdentitiesInequalityoptimizationIMO Shortlist