MathDB
Inequality on trigonometric circle the arcs - ISL 1975

Source:

September 21, 2010
trigonometryTrigonometric inequalityTrigonometric IdentitiesInequalityoptimizationIMO Shortlist

Problem Statement

Consider on the first quadrant of the trigonometric circle the arcs AM1=x1,AM2=x2,AM3=x3,,AMv=xvAM_1 = x_1,AM_2 = x_2,AM_3 = x_3, \ldots , AM_v = x_v , such that x1<x2<x3<<xvx_1 < x_2 < x_3 < \cdots < x_v. Prove that i=0v1sin2xii=0v1sin(xixi+1)<π2+i=0v1sin(xi+xi+1)\sum_{i=0}^{v-1} \sin 2x_i - \sum_{i=0}^{v-1} \sin (x_i- x_{i+1}) < \frac{\pi}{2} + \sum_{i=0}^{v-1} \sin (x_i + x_{i+1})