In the plane we are given a set E of 1991 points, and certain pairs of these points are joined with a path. We suppose that for every point of E, there exist at least 1593 other points of E to which it is joined by a path. Show that there exist six points of E every pair of which are joined by a path.
Alternative version: Is it possible to find a set E of 1991 points in the plane and paths joining certain pairs of the points in E such that every point of E is joined with a path to at least 1592 other points of E, and in every subset of six points of E there exist at least two points that are not joined? combinatoricspoint setTuran s theoremExtremal Graph TheoryExtremal combinatoricsIMO Shortlist