Prove that for any positive integer m there exist an infinite number of pairs of integers (x,y) such that
(i) x and y are relatively prime;
(ii) y divides x^2 \plus{} m;
(iii) x divides y^2 \plus{} m.
(iv) x \plus{} y \leq m \plus{} 1\minus{} (optional condition) algebrapolynomialVietaquadraticsnumber theoryIMO Shortlist