MathDB
There exist an infinite number of pairs of integers (x, y)

Source: IMO Shortlist 1992, Problem 1

August 13, 2008
algebrapolynomialVietaquadraticsnumber theoryIMO Shortlist

Problem Statement

Prove that for any positive integer m m there exist an infinite number of pairs of integers (x,y) (x, y) such that (i) x x and y y are relatively prime; (ii) y y divides x^2 \plus{} m; (iii) x x divides y^2 \plus{} m. (iv) x \plus{} y \leq m \plus{} 1\minus{} (optional condition)