6
Part of 1995 IMO Shortlist
Problems(3)
Inequality with n(n-1)/2
Source: IMO Shortlist 1995, A6
8/10/2008
Let be an integer, Let be real numbers such that x_i < x_{i\plus{}1} for 1 \leq i \leq n \minus{} 1. Prove that
\frac{n(n\minus{}1)}{2} \sum_{i < j} x_ix_j > \left(\sum^{n\minus{}1}_{i\equal{}1} (n\minus{}i)\cdot x_i \right) \cdot \left(\sum^{n}_{j\equal{}2} (j\minus{}1) \cdot x_j \right)
inequalitiesn-variable inequalityIMO Shortlist
Tetrahedron and centroid inequality
Source: IMO Shortlist 1995, G6
8/10/2008
Let be a tetrahedron, its centroid, and and the points where the circumsphere of intersects and respectively. Prove that
and
\frac{1}{GA'_1} \plus{} \frac{1}{GA'_2} \plus{} \frac{1}{GA'_3} \plus{} \frac{1}{GA'_4} \leq \frac{1}{GA_1} \plus{} \frac{1}{GA_2} \plus{} \frac{1}{GA_3} \plus{} \frac{1}{GA_4}.
geometry3D geometrytetrahedrongeometric inequalitysphereIMO Shortlist
f(m + f(n)) = n + f(m + 95)
Source: IMO Shortlist 1995, S6
8/10/2008
Let denote the set of all positive integers. Prove that there exists a unique function satisfying
f(m \plus{} f(n)) \equal{} n \plus{} f(m \plus{} 95)
for all and in What is the value of \sum^{19}_{k \equal{} 1} f(k)?
functionalgebrafunctional equationIMO Shortlist