Inequality with n(n-1)/2
Source: IMO Shortlist 1995, A6
August 10, 2008
inequalitiesn-variable inequalityIMO Shortlist
Problem Statement
Let be an integer, Let be real numbers such that x_i < x_{i\plus{}1} for 1 \leq i \leq n \minus{} 1. Prove that
\frac{n(n\minus{}1)}{2} \sum_{i < j} x_ix_j > \left(\sum^{n\minus{}1}_{i\equal{}1} (n\minus{}i)\cdot x_i \right) \cdot \left(\sum^{n}_{j\equal{}2} (j\minus{}1) \cdot x_j \right)