Let u1,u2,…,u2019 be real numbers satisfying u_{1}+u_{2}+\cdots+u_{2019}=0 \text { and } u_{1}^{2}+u_{2}^{2}+\cdots+u_{2019}^{2}=1. Let a=min(u1,u2,…,u2019) and b=max(u1,u2,…,u2019). Prove that
ab⩽−20191. algebraIMO ShortlistIMO Shortlist 2019