MathDB
Minimum times maximum

Source: IMO 2019 SL A2

September 22, 2020
algebraIMO ShortlistIMO Shortlist 2019

Problem Statement

Let u1,u2,,u2019u_1, u_2, \dots, u_{2019} be real numbers satisfying u_{1}+u_{2}+\cdots+u_{2019}=0   \text { and }   u_{1}^{2}+u_{2}^{2}+\cdots+u_{2019}^{2}=1. Let a=min(u1,u2,,u2019)a=\min \left(u_{1}, u_{2}, \ldots, u_{2019}\right) and b=max(u1,u2,,u2019)b=\max \left(u_{1}, u_{2}, \ldots, u_{2019}\right). Prove that ab12019. a b \leqslant-\frac{1}{2019}.