MathDB
Problems
Contests
International Contests
JBMO ShortLists
2018 JBMO Shortlist
A5
A5
Part of
2018 JBMO Shortlist
Problems
(1)
0<= a,b,c,d<=1<=x,y,z,t and a+b+c+d +x+y+z+t=8 show sum of squares<=28
Source: JBMO Shortlist 2018 A5
7/22/2019
Let a
,
b
,
c
,
d
,b,c,d
,
b
,
c
,
d
and
x
,
y
,
z
,
t
x,y,z,t
x
,
y
,
z
,
t
be real numbers such that
0
≤
a
,
b
,
c
,
d
≤
1
0\le a,b,c,d \le 1
0
≤
a
,
b
,
c
,
d
≤
1
,
x
,
y
,
z
,
t
≥
1
x,y,z,t \ge 1
x
,
y
,
z
,
t
≥
1
and
a
+
b
+
c
+
d
+
x
+
y
+
z
+
t
=
8
a+b+c+d +x+y+z+t=8
a
+
b
+
c
+
d
+
x
+
y
+
z
+
t
=
8
. Prove that
a
2
+
b
2
+
c
2
+
d
2
+
x
2
+
y
2
+
z
2
+
t
2
≤
28
a^2+b^2+c^2+d^2+x^2+y^2+z^2+t^2\le 28
a
2
+
b
2
+
c
2
+
d
2
+
x
2
+
y
2
+
z
2
+
t
2
≤
28
algebra
inequalities