MathDB
0<= a,b,c,d<=1<=x,y,z,t and a+b+c+d +x+y+z+t=8 show sum of squares<=28

Source: JBMO Shortlist 2018 A5

July 22, 2019
algebrainequalities

Problem Statement

Let a,b,c,d,b,c,d and x,y,z,tx,y,z,t be real numbers such that 0a,b,c,d10\le a,b,c,d \le 1 , x,y,z,t1x,y,z,t \ge 1 and a+b+c+d+x+y+z+t=8a+b+c+d +x+y+z+t=8. Prove that a2+b2+c2+d2+x2+y2+z2+t228a^2+b^2+c^2+d^2+x^2+y^2+z^2+t^2\le 28