MathDB
Problems
Contests
International Contests
Nordic
2017 Nordic
2
2
Part of
2017 Nordic
Problems
(1)
Ugly trigonometric inequality [Nordic 2017, P2]
Source: Nordic Mathematical Contest 2017 Problem 2
4/4/2017
Let
a
,
b
,
α
,
β
a, b, \alpha, \beta
a
,
b
,
α
,
β
be real numbers such that
0
≤
a
,
b
≤
1
0 \leq a, b \leq 1
0
≤
a
,
b
≤
1
, and
0
≤
α
,
β
≤
π
2
0 \leq \alpha, \beta \leq \frac{\pi}{2}
0
≤
α
,
β
≤
2
π
. Show that if
a
b
cos
(
α
−
β
)
≤
(
1
−
a
2
)
(
1
−
b
2
)
,
ab\cos(\alpha - \beta) \leq \sqrt{(1-a^2)(1-b^2)},
ab
cos
(
α
−
β
)
≤
(
1
−
a
2
)
(
1
−
b
2
)
,
then
a
cos
α
+
b
sin
β
≤
1
+
a
b
sin
(
β
−
α
)
.
a\cos\alpha + b\sin\beta \leq 1 + ab\sin(\beta - \alpha).
a
cos
α
+
b
sin
β
≤
1
+
ab
sin
(
β
−
α
)
.
trigonometry
inequalities