MathDB
Ugly trigonometric inequality [Nordic 2017, P2]

Source: Nordic Mathematical Contest 2017 Problem 2

April 4, 2017
trigonometryinequalities

Problem Statement

Let a,b,α,βa, b, \alpha, \beta be real numbers such that 0a,b10 \leq a, b \leq 1, and 0α,βπ20 \leq \alpha, \beta \leq \frac{\pi}{2}. Show that if abcos(αβ)(1a2)(1b2), ab\cos(\alpha - \beta) \leq \sqrt{(1-a^2)(1-b^2)}, then acosα+bsinβ1+absin(βα). a\cos\alpha + b\sin\beta \leq 1 + ab\sin(\beta - \alpha).