Subcontests
(4)Nice inequality
I tried to search SRMC problems,but i didn't find them(I found only SRMC 2006).Maybe someone know where on this site i could find SRMC problems?I have all SRMC problems,if someone want i could post them, :wink:
Here is one of them,this is one nice inequality from first SRMC:
Let n be an integer with n>2 and a_{1},a_{2},\dots,a_{n}\in R^{\plus{}}.Given any positive integers t,k,p with 1<t<n,set m\equal{}k\plus{}p,prove the following inequalities:
a)
\frac{a_{1}^{p}}{a_{2}^{k}\plus{}a_{3}^{k}\plus{}\dots\plus{}a_{t}^{k}}\plus{}\frac{a_{2}^{p}}{a_{3}^{k}\plus{}a_{4}^{k}\plus{}\dots\plus{}a_{t\plus{}1}^{k}}\plus{}\dots\plus{}\frac{a_{n\minus{}1}^{p}}{a_{n}^{k}\plus{}a_{1}^{k}\plus{}\dots\plus{}a_{t\minus{}2}^{k}}\plus{}\frac{a_{n}^{p}}{a_{1}^{k}\plus{}a_{2}^{k}\plus{}\dots\plus{}a_{t\minus{}1}^{k}}\geq\frac{(a_{1}^{p}\plus{}a_{2}^{p}\dots\plus{}a_{n}^{p})^{2}}{(t\minus{}1) ( a_{1}^{m}\plus{}a_{2}^{m}\plus{}\dots\plus{}a_{n}^{m})}
b) \frac{a_{2}^{k}\plus{}a_{3}^{k}\dots\plus{}a_{t}^{k}}{a_{1}^{p}}\plus{}\frac{a_{3}^{k}\plus{}a_{4}^{k}\dots\plus{}a_{t\plus{}1}^{k}}{a_{2}^{p}}\plus{}\dots\plus{}\frac{a_{1}^{k}\plus{}a_{2}^{k}\dots\plus{}a_{t\minus{}1}^{k}}{a_{n}^{p}}\geq\frac{(t\minus{}1)(a_{1}^{k}\plus{}a_{2}^{k}\dots\plus{}a_{n}^{k})^{2}}{( a_{1}^{m}\plus{}a_{2}^{m}\plus{}\dots\plus{}a_{n}^{m})} :wink: