Let △ABC be a triangle with incircle ω(I,r)and circumcircle ζ(O,R).Let la be the angle bisector of ∠BAC.Denote P\equal{}l_{a}\cap\zeta.Let D be the point of tangency ω with [BC].Denote Q\equal{}PD\cap\zeta.Show that PI\equal{}QI if PD\equal{}r. geometrycircumcircleangle bisectorgeometry proposed