Prove that for every set of 2n lines in the plane, such that there are no two parallel lines, there are two lines that divide the plane into four quadrants such that in each quadrant the number of unbounded regions is equal to n.[asy]
unitsize(1cm);pair[] A, B;
pair P, Q, R, S;A[1] = (0,5.2);
B[1] = (6.1,0);
A[2] = (1.5,5.5);
B[2] = (3.5,0);
A[3] = (6.8,5.5);
B[3] = (1,0);
A[4] = (7,4.5);
B[4] = (0,4);
P = extension(A[2],B[2],A[4],B[4]);
Q = extension(A[3],B[3],A[4],B[4]);
R = extension(A[1],B[1],A[2],B[2]);
S = extension(A[1],B[1],A[3],B[3]);fill(P--Q--S--R--cycle, palered);
fill(A[4]--(7,0)--B[1]--S--Q--cycle, paleblue);
draw(A[1]--B[1]);
draw(A[2]--B[2]);
draw(A[3]--B[3]);
draw(A[4]--B[4]);label("Bounded region", (3.5,3.7), fontsize(8));
label("Unbounded region", (5.4,2.5), fontsize(8));
[/asy] combinatoricscombinatorial geometrylines