2n lines in the plane
Source: Chile Finals 2014 L2 p6
October 5, 2022
combinatoricscombinatorial geometrylines
Problem Statement
Prove that for every set of lines in the plane, such that there are no two parallel lines, there are two lines that divide the plane into four quadrants such that in each quadrant the number of unbounded regions is equal to .[asy]
unitsize(1cm);pair[] A, B;
pair P, Q, R, S;A[1] = (0,5.2);
B[1] = (6.1,0);
A[2] = (1.5,5.5);
B[2] = (3.5,0);
A[3] = (6.8,5.5);
B[3] = (1,0);
A[4] = (7,4.5);
B[4] = (0,4);
P = extension(A[2],B[2],A[4],B[4]);
Q = extension(A[3],B[3],A[4],B[4]);
R = extension(A[1],B[1],A[2],B[2]);
S = extension(A[1],B[1],A[3],B[3]);fill(P--Q--S--R--cycle, palered);
fill(A[4]--(7,0)--B[1]--S--Q--cycle, paleblue);
draw(A[1]--B[1]);
draw(A[2]--B[2]);
draw(A[3]--B[3]);
draw(A[4]--B[4]);label("Bounded region", (3.5,3.7), fontsize(8));
label("Unbounded region", (5.4,2.5), fontsize(8));
[/asy]