MathDB
2n lines in the plane

Source: Chile Finals 2014 L2 p6

October 5, 2022
combinatoricscombinatorial geometrylines

Problem Statement

Prove that for every set of 2n2n lines in the plane, such that there are no two parallel lines, there are two lines that divide the plane into four quadrants such that in each quadrant the number of unbounded regions is equal to nn.
[asy] unitsize(1cm);
pair[] A, B; pair P, Q, R, S;
A[1] = (0,5.2); B[1] = (6.1,0); A[2] = (1.5,5.5); B[2] = (3.5,0); A[3] = (6.8,5.5); B[3] = (1,0); A[4] = (7,4.5); B[4] = (0,4); P = extension(A[2],B[2],A[4],B[4]); Q = extension(A[3],B[3],A[4],B[4]); R = extension(A[1],B[1],A[2],B[2]); S = extension(A[1],B[1],A[3],B[3]);
fill(P--Q--S--R--cycle, palered); fill(A[4]--(7,0)--B[1]--S--Q--cycle, paleblue); draw(A[1]--B[1]); draw(A[2]--B[2]); draw(A[3]--B[3]); draw(A[4]--B[4]);
label("Bounded region", (3.5,3.7), fontsize(8)); label("Unbounded region", (5.4,2.5), fontsize(8)); [/asy]