MathDB
Problems
Contests
National and Regional Contests
China Contests
(China) National High School Mathematics League
2006 China Second Round Olympiad
14
14
Part of
2006 China Second Round Olympiad
Problems
(1)
2006 China Second Round Olympiad Test 1 #14
Source:
9/28/2014
Let
2006
2006
2006
be expressed as the sum of five positive integers
x
1
,
x
2
,
x
3
,
x
4
,
x
5
x_1, x_2, x_3, x_4, x_5
x
1
,
x
2
,
x
3
,
x
4
,
x
5
, and
S
=
∑
1
≤
i
<
j
≤
5
x
i
x
j
S=\sum_{1\le i<j\le 5}x_ix_j
S
=
∑
1
≤
i
<
j
≤
5
x
i
x
j
.
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
<span class='latex-bold'>(A)</span>
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
What value of
x
1
,
x
2
,
x
3
,
x
4
,
x
5
x_1, x_2, x_3, x_4, x_5
x
1
,
x
2
,
x
3
,
x
4
,
x
5
maximizes
S
S
S
?
<
s
p
a
n
c
l
a
s
s
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
a
n
>
<span class='latex-bold'>(A)</span>
<
s
p
an
c
l
a
ss
=
′
l
a
t
e
x
−
b
o
l
d
′
>
(
A
)
<
/
s
p
an
>
Find, with proof, the value of
x
1
,
x
2
,
x
3
,
x
4
,
x
5
x_1, x_2, x_3, x_4, x_5
x
1
,
x
2
,
x
3
,
x
4
,
x
5
which minimizes of
S
S
S
if
∣
x
i
−
x
j
∣
≤
2
|x_i-x_j|\le 2
∣
x
i
−
x
j
∣
≤
2
for any
1
≤
i
1\le i
1
≤
i
,
j
≤
5
j\le 5
j
≤
5
.