Let 2006 be expressed as the sum of five positive integers x1,x2,x3,x4,x5, and S=∑1≤i<j≤5xixj.
<spanclass=′latex−bold′>(A)</span> What value of x1,x2,x3,x4,x5 maximizes S?
<spanclass=′latex−bold′>(A)</span> Find, with proof, the value of x1,x2,x3,x4,x5 which minimizes of S if ∣xi−xj∣≤2 for any 1≤i, j≤5.