MathDB
2006 China Second Round Olympiad Test 1 #14

Source:

September 28, 2014

Problem Statement

Let 20062006 be expressed as the sum of five positive integers x1,x2,x3,x4,x5x_1, x_2, x_3, x_4, x_5, and S=1i<j5xixjS=\sum_{1\le i<j\le 5}x_ix_j. <spanclass=latexbold>(A)</span> <span class='latex-bold'>(A)</span> What value of x1,x2,x3,x4,x5x_1, x_2, x_3, x_4, x_5 maximizes SS? <spanclass=latexbold>(A)</span> <span class='latex-bold'>(A)</span> Find, with proof, the value of x1,x2,x3,x4,x5x_1, x_2, x_3, x_4, x_5 which minimizes of SS if xixj2|x_i-x_j|\le 2 for any 1i1\le i, j5j\le 5.