MathDB
Problems
Contests
National and Regional Contests
China Contests
(China) National High School Mathematics League
2006 China Second Round Olympiad
15
15
Part of
2006 China Second Round Olympiad
Problems
(1)
2006 China Second Round Olympiad Test 1 #15
Source:
9/28/2014
Suppose
f
(
x
)
=
x
2
+
a
f(x)=x^2+a
f
(
x
)
=
x
2
+
a
. Define
f
1
(
x
)
=
f
(
x
)
f^1(x)=f(x)
f
1
(
x
)
=
f
(
x
)
,
f
n
(
x
)
=
f
(
f
n
−
1
(
x
)
)
f^n(x)=f(f^{n-1}(x))
f
n
(
x
)
=
f
(
f
n
−
1
(
x
))
,
n
=
2
,
3
,
⋯
n=2, 3, \cdots
n
=
2
,
3
,
⋯
, and let
M
=
{
a
∈
R
∣
∣
f
n
(
0
)
∣
≤
2
,
for any
n
∈
N
}
M=\{a\in\mathbb{R}| |f^n(0)|\le 2, \text{for any } n\in\mathbb{N}\}
M
=
{
a
∈
R
∣∣
f
n
(
0
)
∣
≤
2
,
for any
n
∈
N
}
. Prove that
M
=
[
−
2
,
1
4
]
M=[-2, \frac{1}{4}]
M
=
[
−
2
,
4
1
]
.