MathDB
2006 China Second Round Olympiad Test 1 #15

Source:

September 28, 2014

Problem Statement

Suppose f(x)=x2+af(x)=x^2+a. Define f1(x)=f(x)f^1(x)=f(x), fn(x)=f(fn1(x))f^n(x)=f(f^{n-1}(x)), n=2,3,n=2, 3, \cdots, and let M={aRfn(0)2,for any nN}M=\{a\in\mathbb{R}| |f^n(0)|\le 2, \text{for any } n\in\mathbb{N}\} . Prove that M=[2,14]M=[-2, \frac{1}{4}].