MathDB
Problems
Contests
National and Regional Contests
China Contests
(China) National High School Mathematics League
2015 China Second Round Olympiad
1
1
Part of
2015 China Second Round Olympiad
Problems
(2)
China Second Round Olympiad 2015 Test 2 Q1
Source: China
9/13/2015
Let
a
1
,
a
2
,
…
,
a
n
a_1, a_2, \ldots, a_n
a
1
,
a
2
,
…
,
a
n
be real numbers.Prove that you can select
ε
1
,
ε
2
,
…
,
ε
n
∈
{
−
1
,
1
}
\varepsilon _1, \varepsilon _2, \ldots, \varepsilon _n\in\{-1,1\}
ε
1
,
ε
2
,
…
,
ε
n
∈
{
−
1
,
1
}
such that
(
∑
i
=
1
n
a
i
)
2
+
(
∑
i
=
1
n
ε
i
a
i
)
2
≤
(
n
+
1
)
(
∑
i
=
1
n
a
i
2
)
.
\left( \sum_{i=1}^{n}a_{i}\right)^2 +\left( \sum_{i=1}^{n}\varepsilon _ia_{i}\right)^2 \leq(n+1)\left( \sum_{i=1}^{n}a^2_{i}\right).
(
i
=
1
∑
n
a
i
)
2
+
(
i
=
1
∑
n
ε
i
a
i
)
2
≤
(
n
+
1
)
(
i
=
1
∑
n
a
i
2
)
.
inequalities
Probabilistic Method
China Second Round Olympiad 2015 (B) Test 2 ,Q1
Source: Sep 13, 2015
9/15/2015
Let
a
,
b
,
c
a,b,c
a
,
b
,
c
be nonnegative real numbers.Prove that
(
a
−
b
c
)
2
+
(
b
−
c
a
)
2
+
(
c
−
a
b
)
2
(
a
−
b
)
2
+
(
b
−
c
)
2
+
(
c
−
a
)
2
≥
1
2
.
\frac{(a-bc)^2+(b-ca)^2+(c-ab)^2}{(a-b)^2+(b-c)^2+(c-a)^2}\geq\frac{1}{2}.
(
a
−
b
)
2
+
(
b
−
c
)
2
+
(
c
−
a
)
2
(
a
−
b
c
)
2
+
(
b
−
c
a
)
2
+
(
c
−
ab
)
2
≥
2
1
.
inequalities