MathDB
China Second Round Olympiad 2015 Test 2 Q1

Source: China

September 13, 2015
inequalitiesProbabilistic Method

Problem Statement

Let a1,a2,,ana_1, a_2, \ldots, a_n be real numbers.Prove that you can select ε1,ε2,,εn{1,1}\varepsilon _1, \varepsilon _2, \ldots, \varepsilon _n\in\{-1,1\} such that(i=1nai)2+(i=1nεiai)2(n+1)(i=1nai2).\left( \sum_{i=1}^{n}a_{i}\right)^2 +\left( \sum_{i=1}^{n}\varepsilon _ia_{i}\right)^2 \leq(n+1)\left( \sum_{i=1}^{n}a^2_{i}\right).