MathDB
Problems
Contests
National and Regional Contests
China Contests
China National Olympiad
1994 China National Olympiad
4
4
Part of
1994 China National Olympiad
Problems
(1)
China Mathematical Olympiad 1994 problem4
Source: China Mathematical Olympiad 1994 problem4
9/17/2013
Let
f
(
z
)
=
c
0
z
n
+
c
1
z
n
−
1
+
c
2
z
n
−
2
+
⋯
+
c
n
−
1
z
+
c
n
f(z)=c_0z^n+c_1z^{n-1}+ c_2z^{n-2}+\cdots +c_{n-1}z+c_n
f
(
z
)
=
c
0
z
n
+
c
1
z
n
−
1
+
c
2
z
n
−
2
+
⋯
+
c
n
−
1
z
+
c
n
be a polynomial with complex coefficients. Prove that there exists a complex number
z
0
z_0
z
0
such that
∣
f
(
z
0
)
∣
≥
∣
c
0
∣
+
∣
c
n
∣
|f(z_0)|\ge |c_0|+|c_n|
∣
f
(
z
0
)
∣
≥
∣
c
0
∣
+
∣
c
n
∣
, where
∣
z
0
∣
≤
1
|z_0|\le 1
∣
z
0
∣
≤
1
.
algebra
polynomial
algebra unsolved