MathDB
China Mathematical Olympiad 1994 problem4

Source: China Mathematical Olympiad 1994 problem4

September 17, 2013
algebrapolynomialalgebra unsolved

Problem Statement

Let f(z)=c0zn+c1zn1+c2zn2++cn1z+cnf(z)=c_0z^n+c_1z^{n-1}+ c_2z^{n-2}+\cdots +c_{n-1}z+c_n be a polynomial with complex coefficients. Prove that there exists a complex number z0z_0 such that f(z0)c0+cn|f(z_0)|\ge |c_0|+|c_n|, where z01|z_0|\le 1.