MathDB

2012 China National Olympiad

Part of China National Olympiad

Subcontests

(3)
1
2

AP bisects angle BAC

In the triangle ABCABC, A\angle A is biggest. On the circumcircle of ABC\triangle ABC, let DD be the midpoint of ABC^\widehat{ABC} and EE be the midpoint of ACB^\widehat{ACB}. The circle c1c_1 passes through A,BA,B and is tangent to ACAC at AA, the circle c2c_2 passes through A,EA,E and is tangent ADAD at AA. c1c_1 and c2c_2 intersect at AA and PP. Prove that APAP bisects BAC\angle BAC.
[hide="Diagram"][asy] /* File unicodetex not found. */ /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */ import graph; size(14.4cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -5.23, xmax = 9.18, ymin = -2.97, ymax = 4.82; /* image dimensions */ /* draw figures */ draw(circle((-1.32,1.36), 2.98)); draw(circle((3.56,1.53), 3.18)); draw((0.92,3.31)--(-2.72,-1.27)); draw(circle((0.08,0.25), 3.18)); draw((-2.72,-1.27)--(3.13,-0.65)); draw((3.13,-0.65)--(0.92,3.31)); draw((0.92,3.31)--(2.71,-1.54)); draw((-2.41,-1.74)--(0.92,3.31)); draw((0.92,3.31)--(1.05,-0.43)); /* dots and labels */ dot((-1.32,1.36),dotstyle); dot((0.92,3.31),dotstyle); label("AA", (0.81,3.72), NE * labelscalefactor); label("c1c_1", (-2.81,3.53), NE * labelscalefactor); dot((3.56,1.53),dotstyle); label("c2c_2", (3.43,3.98), NE * labelscalefactor); dot((1.05,-0.43),dotstyle); label("PP", (0.5,-0.43), NE * labelscalefactor); dot((-2.72,-1.27),dotstyle); label("BB", (-3.02,-1.57), NE * labelscalefactor); dot((2.71,-1.54),dotstyle); label("EE", (2.71,-1.86), NE * labelscalefactor); dot((3.13,-0.65),dotstyle); label("CC", (3.39,-0.9), NE * labelscalefactor); dot((-2.41,-1.74),dotstyle); label("DD", (-2.78,-2.07), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */[/asy]