AP bisects angle BAC
Source: 2012 China Mathematical Olympiad P1
January 7, 2012
geometrycircumcircleAsymptotegeometric transformationreflectiontrigonometryfunction
Problem Statement
In the triangle , is biggest. On the circumcircle of , let be the midpoint of and be the midpoint of . The circle passes through and is tangent to at , the circle passes through and is tangent at . and intersect at and . Prove that bisects .[hide="Diagram"][asy]
/* File unicodetex not found. */
/* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki, go to User:Azjps/geogebra */
import graph; size(14.4cm);
real labelscalefactor = 0.5; /* changes label-to-point distance */
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
pen dotstyle = black; /* point style */
real xmin = -5.23, xmax = 9.18, ymin = -2.97, ymax = 4.82; /* image dimensions */
/* draw figures */
draw(circle((-1.32,1.36), 2.98));
draw(circle((3.56,1.53), 3.18));
draw((0.92,3.31)--(-2.72,-1.27));
draw(circle((0.08,0.25), 3.18));
draw((-2.72,-1.27)--(3.13,-0.65));
draw((3.13,-0.65)--(0.92,3.31));
draw((0.92,3.31)--(2.71,-1.54));
draw((-2.41,-1.74)--(0.92,3.31));
draw((0.92,3.31)--(1.05,-0.43));
/* dots and labels */
dot((-1.32,1.36),dotstyle);
dot((0.92,3.31),dotstyle);
label("", (0.81,3.72), NE * labelscalefactor);
label("", (-2.81,3.53), NE * labelscalefactor);
dot((3.56,1.53),dotstyle);
label("", (3.43,3.98), NE * labelscalefactor);
dot((1.05,-0.43),dotstyle);
label("", (0.5,-0.43), NE * labelscalefactor);
dot((-2.72,-1.27),dotstyle);
label("", (-3.02,-1.57), NE * labelscalefactor);
dot((2.71,-1.54),dotstyle);
label("", (2.71,-1.86), NE * labelscalefactor);
dot((3.13,-0.65),dotstyle);
label("", (3.39,-0.9), NE * labelscalefactor);
dot((-2.41,-1.74),dotstyle);
label("", (-2.78,-2.07), NE * labelscalefactor);
clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
/* end of picture */[/asy]