MathDB

Problems(6)

PQ is parallel to BC

Source: 2013 China TST Quiz 1 Day 1 P1

3/30/2013
The quadrilateral ABCDABCD is inscribed in circle ω\omega. FF is the intersection point of ACAC and BDBD. BABA and CDCD meet at EE. Let the projection of FF on ABAB and CDCD be GG and HH, respectively. Let MM and NN be the midpoints of BCBC and EFEF, respectively. If the circumcircle of MNG\triangle MNG only meets segment BFBF at PP, and the circumcircle of MNH\triangle MNH only meets segment CFCF at QQ, prove that PQPQ is parallel to BCBC.
geometrycircumcirclegeometric transformationreflectiongeometry proposed
Maximum of sum given two conditions

Source: Chinese TST 1 2012 Day 2 Q1

3/15/2013
Let nn and kk be two integers which are greater than 11. Let a1,a2,,an,c1,c2,,cma_1,a_2,\ldots,a_n,c_1,c_2,\ldots,c_m be non-negative real numbers such that i) a1a2ana_1\ge a_2\ge\ldots\ge a_n and a1+a2++an=1a_1+a_2+\ldots+a_n=1; ii) For any integer m{1,2,,n}m\in\{1,2,\ldots,n\}, we have that c1+c2++cmmkc_1+c_2+\ldots+c_m\le m^k. Find the maximum of c1a1k+c2a2k++cnankc_1a_1^k+c_2a_2^k+\ldots+c_na_n^k.
inequalities proposedinequalitiesChina TST
A collection of lattice points and their distances

Source: Chinese TST 2 2013 Day 1 Q1

4/1/2013
For a positive integer k2k\ge 2 define Tk={(x,y)x,y=0,1,,k1}\mathcal{T}_k=\{(x,y)\mid x,y=0,1,\ldots, k-1\} to be a collection of k2k^2 lattice points on the cartesian coordinate plane. Let d1(k)>d2(k)>d_1(k)>d_2(k)>\cdots be the decreasing sequence of the distinct distances between any two points in TkT_k. Suppose Si(k)S_i(k) be the number of distances equal to di(k)d_i(k). Prove that for any three positive integers m>n>im>n>i we have Si(m)=Si(n)S_i(m)=S_i(n).
analytic geometryinductionfloor functioncombinatorics proposedcombinatorics
Sum of exponents of primes in factorisation

Source: Chinese TST 2 2013 Day 2 Q1

3/29/2013
For a positive integer N>1N>1 with unique factorization N=p1α1p2α2pkαkN=p_1^{\alpha_1}p_2^{\alpha_2}\dotsb p_k^{\alpha_k}, we define Ω(N)=α1+α2++αk.\Omega(N)=\alpha_1+\alpha_2+\dotsb+\alpha_k. Let a1,a2,,ana_1,a_2,\dotsc, a_n be positive integers and p(x)=(x+a1)(x+a2)(x+an)p(x)=(x+a_1)(x+a_2)\dotsb (x+a_n) such that for all positive integers kk, Ω(P(k))\Omega(P(k)) is even. Show that nn is an even number.
symmetrynumber theory proposednumber theory
2013 China IMO Team Selection Test 3 Day 2 Q1

Source: 25 Mar 2013

3/29/2013
Let pp be a prime number and a,ka, k be positive integers such that pa<k<2pap^a<k<2p^a. Prove that there exists a positive integer nn such that n<p2a,Cnknk(modpa).n<p^{2a}, C_n^k\equiv n\equiv k\pmod {p^a}.
modular arithmeticgeometrygeometric transformationreal analysisnumber theory proposednumber theory
2013 China IMO Team Selection Test 3 Day 1 Q1

Source:

4/1/2013
Let n2n\ge 2 be an integer. a1,a2,,ana_1,a_2,\dotsc,a_n are arbitrarily chosen positive integers with (a1,a2,,an)=1(a_1,a_2,\dotsc,a_n)=1. Let A=a1+a2++anA=a_1+a_2+\dotsb+a_n and (A,ai)=di(A,a_i)=d_i. Let (a2,a3,,an)=D1,(a1,a3,,an)=D2,,(a1,a2,,an1)=Dn(a_2,a_3,\dotsc,a_n)=D_1, (a_1,a_3,\dotsc,a_n)=D_2,\dotsc, (a_1,a_2,\dotsc,a_{n-1})=D_n. Find the minimum of i=1nAaidiDi\prod\limits_{i=1}^n\dfrac{A-a_i}{d_iD_i}
number theory proposednumber theory