MathDB
2013 China IMO Team Selection Test 3 Day 1 Q1

Source:

April 1, 2013
number theory proposednumber theory

Problem Statement

Let n2n\ge 2 be an integer. a1,a2,,ana_1,a_2,\dotsc,a_n are arbitrarily chosen positive integers with (a1,a2,,an)=1(a_1,a_2,\dotsc,a_n)=1. Let A=a1+a2++anA=a_1+a_2+\dotsb+a_n and (A,ai)=di(A,a_i)=d_i. Let (a2,a3,,an)=D1,(a1,a3,,an)=D2,,(a1,a2,,an1)=Dn(a_2,a_3,\dotsc,a_n)=D_1, (a_1,a_3,\dotsc,a_n)=D_2,\dotsc, (a_1,a_2,\dotsc,a_{n-1})=D_n. Find the minimum of i=1nAaidiDi\prod\limits_{i=1}^n\dfrac{A-a_i}{d_iD_i}