MathDB
Problems
Contests
National and Regional Contests
China Contests
China Team Selection Test
2024 China Team Selection Test
21
21
Part of
2024 China Team Selection Test
Problems
(1)
Inequality with Strange Condition
Source: 2024CTST P21
3/28/2024
Let integer
n
≥
3
,
n\ge 3,
n
≥
3
,
(
n
2
)
\tbinom n2
(
2
n
)
nonnegative real numbers
a
i
,
j
a_{i,j}
a
i
,
j
satisfy
a
i
,
j
+
a
j
,
k
≤
a
i
,
k
a_{i,j}+a_{j,k}\le a_{i,k}
a
i
,
j
+
a
j
,
k
≤
a
i
,
k
holds for all
1
≤
i
<
j
<
k
≤
n
1\le i <j<k\le n
1
≤
i
<
j
<
k
≤
n
. Proof
⌊
n
2
4
⌋
∑
1
≤
i
<
j
≤
n
a
i
,
j
4
≥
(
∑
1
≤
i
<
j
≤
n
a
i
,
j
2
)
2
.
\left\lfloor\frac{n^2}4\right\rfloor\sum_{1\le i<j\le n}a_{i,j}^4\ge \left(\sum_{1\le i<j\le n}a_{i,j}^2\right)^2.
⌊
4
n
2
⌋
1
≤
i
<
j
≤
n
∑
a
i
,
j
4
≥
(
1
≤
i
<
j
≤
n
∑
a
i
,
j
2
)
2
.
Proposed by Jingjun Han
inequalities
2024 CTST