MathDB
Problems
Contests
National and Regional Contests
China Contests
China Team Selection Test
2024 China Team Selection Test
21
Inequality with Strange Condition
Inequality with Strange Condition
Source: 2024CTST P21
March 28, 2024
inequalities
2024 CTST
Problem Statement
Let integer
n
≥
3
,
n\ge 3,
n
≥
3
,
(
n
2
)
\tbinom n2
(
2
n
)
nonnegative real numbers
a
i
,
j
a_{i,j}
a
i
,
j
satisfy
a
i
,
j
+
a
j
,
k
≤
a
i
,
k
a_{i,j}+a_{j,k}\le a_{i,k}
a
i
,
j
+
a
j
,
k
≤
a
i
,
k
holds for all
1
≤
i
<
j
<
k
≤
n
1\le i <j<k\le n
1
≤
i
<
j
<
k
≤
n
. Proof
⌊
n
2
4
⌋
∑
1
≤
i
<
j
≤
n
a
i
,
j
4
≥
(
∑
1
≤
i
<
j
≤
n
a
i
,
j
2
)
2
.
\left\lfloor\frac{n^2}4\right\rfloor\sum_{1\le i<j\le n}a_{i,j}^4\ge \left(\sum_{1\le i<j\le n}a_{i,j}^2\right)^2.
⌊
4
n
2
⌋
1
≤
i
<
j
≤
n
∑
a
i
,
j
4
≥
(
1
≤
i
<
j
≤
n
∑
a
i
,
j
2
)
2
.
Proposed by Jingjun Han
Back to Problems
View on AoPS