MathDB

Problems(2)

Arithmetic Sequence

Source: 1997 National High School Mathematics League, Exam One, Problem 3

3/4/2020
The first item and common difference of an arithmetic sequence are nonnegative intengers. The number of items is not less than 33, and the sum of all items is 97297^2. Then the number of such sequences is (A)2(B)3(C)4(D)5\text{(A)}2\qquad\text{(B)}3\qquad\text{(C)}4\qquad\text{(D)}5
arithmetic sequence
A Large Table

Source: 1997 National High School Mathematics League, Exam Two, Problem 3

3/6/2020
In a 100×25100\times25 rectangle table, fill in a positive real number in each blank. Let the number in the iith line, the jjth column be xi,j(i=1,2,,100,j=1,2,,25)x_{i,j}(i=1,2,\cdots,100,j=1,2,\cdots,25) (shown in Fig.1 ). Then, we rearrange the numbers in each column: x1,jx2,jx100,j(j=1,2,,25)x'_{1,j}\geq x'_{2,j}\geq\cdots\geq x'_{100,j}(j=1,2,\cdots,25) (shown in Fig.2 ). Find the minumum value of kk, satisfying: As long as j=125xi,j1\sum_{j=1}^{25}x_{i,j}\leq1 for numbers in Fig.1 (i=1,2,,100i=1,2,\cdots,100), then j=125xi,j1\sum_{j=1}^{25}x'_{i,j}\leq1 for iki\geq k in Fig.2. Fig.1\\ \begin{tabular}{|c|c|c|c|} \hline $x_{1,1}$&$x_{1,2}$&$\cdots$&$x_{1,25}$\\ \hline $x_{2,1}$&$x_{2,2}$&$\cdots$&$x_{2,25}$\\ \hline $\cdots$&$\cdots$&$\cdots$&$\cdots$\\ \hline $x_{100,1}$&$x_{100,2}$&$\cdots$&$x_{100,25}$\\ \hline \end{tabular} \qquadFig.2\\ \begin{tabular}{|c|c|c|c|} \hline $x'_{1,1}$&$x'_{1,2}$&$\cdots$&$x'_{1,25}$\\ \hline $x'_{2,1}$&$x'_{2,2}$&$\cdots$&$x'_{2,25}$\\ \hline $\cdots$&$\cdots$&$\cdots$&$\cdots$\\ \hline $x'_{100,1}$&$x'_{100,2}$&$\cdots$&$x'_{100,25}$\\ \hline \end{tabular}
geometryrectangle