A Large Table
Source: 1997 National High School Mathematics League, Exam Two, Problem 3
March 6, 2020
geometryrectangle
Problem Statement
In a rectangle table, fill in a positive real number in each blank. Let the number in the th line, the th column be (shown in Fig.1 ). Then, we rearrange the numbers in each column: (shown in Fig.2 ). Find the minumum value of , satisfying:
As long as for numbers in Fig.1 (), then for in Fig.2.
Fig.1\\
\begin{tabular}{|c|c|c|c|}
\hline
$x_{1,1}$&$x_{1,2}$&$\cdots$&$x_{1,25}$\\
\hline
$x_{2,1}$&$x_{2,2}$&$\cdots$&$x_{2,25}$\\
\hline
$\cdots$&$\cdots$&$\cdots$&$\cdots$\\
\hline
$x_{100,1}$&$x_{100,2}$&$\cdots$&$x_{100,25}$\\
\hline
\end{tabular}
\qquadFig.2\\
\begin{tabular}{|c|c|c|c|}
\hline
$x'_{1,1}$&$x'_{1,2}$&$\cdots$&$x'_{1,25}$\\
\hline
$x'_{2,1}$&$x'_{2,2}$&$\cdots$&$x'_{2,25}$\\
\hline
$\cdots$&$\cdots$&$\cdots$&$\cdots$\\
\hline
$x'_{100,1}$&$x'_{100,2}$&$\cdots$&$x'_{100,25}$\\
\hline
\end{tabular}