MathDB

Problems(2)

CSMO 2017 Grade 10 Problem 2

Source: China Southeast Mathematical Olympiad

8/1/2017
Let ABCABC be an acute-angled triangle. In ABCABC, ABABAB \neq AB, KK is the midpoint of the the median ADAD, DEABDE \perp AB at EE, DFACDF \perp AC at FF. The lines KEKE, KFKF intersect the line BCBC at MM, NN, respectively. The circumcenters of DEM\triangle DEM, DFN\triangle DFN are O1,O2O_1, O_2, respectively. Prove that O1O2BCO_1 O_2 \parallel BC.
geometry
Who is Mr Boole?

Source: 2017 China South East Mathematical Olympiad Day1 P2

7/30/2017
Let xi{0,1}(i=1,2,,n)x_i \in \{0,1\}(i=1,2,\cdots ,n),if the value of function f=f(x1,x2,,xn)f=f(x_1,x_2, \cdots ,x_n) can only be 00 or 11,then we call ff a nn-var Boole function,and we denote Dn(f)={(x1,x2,,xn)f(x1,x2,,xn)=0}.D_n(f)=\{(x_1,x_2, \cdots ,x_n)|f(x_1,x_2, \cdots ,x_n)=0\}. (1)(1) Find the number of nn-var Boole function; (2)(2) Let gg be a nn-var Boole function such that g(x1,x2,,xn)1+x1+x1x2+x1x2x3++x1x2xn(mod2)g(x_1,x_2, \cdots ,x_n) \equiv 1+x_1+x_1x_2+x_1x_2x_3 +\cdots +x_1x_2 \cdots x_n \pmod 2, Find the number of elements of the set Dn(g)D_n(g),and find the maximum of nN+n \in \mathbb{N}_+ such that (x1,x2,,xn)Dn(g)(x1+x2++xn)2017.\sum_{(x_1,x_2, \cdots ,x_n) \in D_n(g)}(x_1+x_2+ \cdots +x_n) \le 2017.
functionmodular arithmeticalgebranumber theory